In this **HackerRank Spies, Revised problem solution** Sam invented a new puzzle game played on an n x n matrix named puzzle, where each cell contains a unique integer in the inclusive range between 1 and N (square). The coordinate of the top-left cell is (1,1).

## Problem solution in C++.

#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <vector> #include <cmath> #include <iostream> #include <map> using namespace std; int dp[110][1<<3]; int min_operations(vector <int> red, vector <int> green, vector <int> blue) { int n = (int)red.size(), i, j; for (i = 0; i <= n; i++) { for (j = 0; j < 8; j++) { dp[i][j] = 1<<30; } } dp[0][0] = 0; for (i = 0; i < n; i++){ for (j = 0; j < 8; j++){ dp[i + 1][j | 1] = min(dp[i + 1][j | 1], dp[i][j] + green[i] + blue[i]); dp[i + 1][j | 2] = min(dp[i + 1][j | 2], dp[i][j] + red[i] + blue[i]); dp[i + 1][j | 4] = min(dp[i + 1][j | 4], dp[i][j] + red[i] + green[i]); } } j = 0; for (i = 0; i < n; i++){ if (green[i]) j |= 2; if (red[i]) j |= 1; if (blue[i]) j |= 4; } if (dp[n][j] >= (1<<30)) dp[n][j] = -1; return dp[n][j]; } int main() { int n, r, g, b; cin >> n; vector<int> red, blue, green; for(int i = 0; i < n; i++){ cin >> r >> g >> b; red.push_back(r); green.push_back(g); blue.push_back(b); } cout << min_operations(red, green, blue) << "\n"; return 0; }

## 0 Comments